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ABSTRACT 

This article deals with the algorithms of recognition based on computing estimations. 

Algorithms of recognition of the palm of a person have been developed on the basis of this 

approach invariant to affine transformations. 
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INTRODUCTION 

Let us have a given object set Ω = {wi}, This set has to be split into subsets (classes) Ωi, 

i = 1, m�����, Ω = ⋃ Ωi
m
i=1 . All objects are described by the vector of attributes x = (x1, … , xi). We 

shall name this vector the vector of non-derived (or prime or basic) attributes. Each of the 

attributes can assume values from some set A (alphabet). This can be {0,1} attribute non-present 

or present respectively; {0,1, … , n} - degree of evidence of the attribute has different gradations; 

a set of real numbers from a segment [a, b]; a set of symbols or lines of symbols, etc. 

Splitting of the set Ω is not given complete, only some information on the classes Ωi is 

given in the form of the set Ω∗, where Ω∗ = ⋃ Ω∗
i

m
i=1 , wi,j ∈ Ωi − known (given) representatives 

of class Ωi. 

Ω∗ ∈  Ω , Ω∗
i ∈ Ωi 

The sets Ω∗
i are finite and let |Ω∗

i| = ni be the number of representatives of i-th class.  

Such prior information on splitting Ω for the recognition algorithm is given by the 3D 

structure 

T = �xi,jr�, i = 1, m�����, j = 1, nı�����; r = 1, l���� 

xi,jr – r-th element of the vector of attribute of the description of j-th representative of the i-th 

class. Such 3D array of prior information can be presented in the form of the two-dimensional 

array (the so-called learning table TN,1). Each line of the table is a vector of attributes, whose 
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lines are set as follows: lines with numbers from 1 to ni be descriptions of objects of class Ωi, 

lines with numbers n1 + n2 – descriptions of objects of class Ω1, etc. 

METHODOLOGY 

Let us examine the full set of attributes (x1, … xl), distinguish the system of subsets of the 

set of attributes (S1, … , Sk) (a system of the algorithm reference sets). Let |S1| = qi, qj < 1, each 

subset constitute Siof attributes from the complete set of qi. Let |Si| = (Si,1, … Si,q), we shall call 

derived attributes (or secondary) and pack with two-dimensional structure S = �Si,j�, i = 1, k�����;  j =

1, qı������. 

Introduction of derived attributes is caused by the fact, that the main information for 

recognition is often contained not in separate attributes, but in their combination. Such 

combination of prime attributes we have called as derived attribute. 

Informally the algorithm of recognition based on estimation now can be formulated as 

follows: vector of attributes of the object w that has to be identified is compared with the 

learning table TN,1 taking into account the system of reference subsets S1, … , Sk to take the 

decision to which class Ωi the object has to be attributed. 

Prior to the formal description of the algorithm we shall formulate its structure of data as 

stated above.  

Recognition algorithm can be described now more formally in the above said denotations 

and structures. 

It is necessary to take a decision on attributing object w, described by the vector of 

attribute y = �y1, … , yj� to a certain class Ωi proceeding from Tand S. 

1. For each representative wr(r = 1, nı)������� of class Ωi and reference subset Siwe formulate 

estimation of proximity of object w described y = �y1, … , yj� that has to be recognized 

(input object). 

O1�y, xi, si, Ωj� = O1 ��ysi1, … , ysiqi��xjsj, … , xjisqi�� 

2. Then we formulate estimate of the input vector in all representatives of j-th class of i-th 

reference subset 

O2�y, si, Ωj� = O2(O1�y, xi, si, Ωj�, … , O1�y, xiqi , si, Ωj�) 

Table 1 

Denotation Explanation 
L Set of values (alphabet of presentation of the objects’ description to 

the vector of attributes) 
I Length of vector of attributes of the objects’ description (number of 

non-derived attributes) 
x = {xi}; i = I, L���� Vector of attributes of the objects’ description xi ∈ L 

SCIENTIFIC COOPERATIONS 2nd INTERNATIONAL CONFERENCE ON SOCIAL SCIENCES, 2-3 APRIL 2016, ISTANBUL-TURKEY

148



m Number of classes of recognition, that is, number of subsets Ω1 of the 
set Ω 

n Number of representatives of class Ω1 in the learning table ni = ‖Ωi
∗‖ 

T = �tijr�; 
i = 1, m�����;  j = 1, n; 
r=1, I���� 

Algorithm learning table, prior information on splitting the set Ω 

K Number of reference subsets of the algorithm (number of derived 
attributes) 

qi;  ji = 1, K����� Number of components of the vector of description of the object 
included in i-th derived attribute qi = |Si| 

S = �sj�; i = l, K����; 
j = 1, qı������ 

Two-dimensional structure of description of indices the vector of 
attributes included in non-derived attributes 

 

3. We formulate estimation of the input vector in all reference subsets for each j-th class 

O3�y, Ωj� = O3(�O2�y, si, Ωj�, … , O2�y, sk, Ωj�)� 

Proceeding from estimations O3�y, Ωj� of the input vector in each Wjclass a decision is 

taken on attributing object w1 to one of the classes Ωj, j = 1, m����� on refusal from recognition. 

The rule of solution can assume various forms. Recognition object w1 can be attributed to 

the class to which maximum estimation O3 corresponds, or if it exceeds estimations in all other 

classes at least by a specified threshold value p, or if its ratio to the sum of all other estimations 

will not be below some threshold pi, etc. The choice of the rule of solution and its parameters 

depends on the concrete task of recognition, on prior information and practical experience in 

solving such problems. 

Now we shall formulate the described structure of the data of recognition algorithm in 

terms of the programming language (Pascal). 

Table 2 

Object of program Denotation Explanation 
I  Number of non-derived attributes 

m  Number of recognition classes 
k  Number of derived attributes 

x[1, I����] {xi} Vector of attributes 
n[1, m�����] nj Number of representatives in class 

T�1, m�����, 1, nȷ, 1, I��������������� �lir� Learning table 

q�1, k������ qi Number of necessary attributes in  
S�1, k�����, 1, qı������� Sij Two-dimensional array of indices of derived 

attributes formation 

 

Let us denote F_01, F_02, and F_03 functions, that recurrently determine partial 

estimations O1, O2 and O3 respectively, and G_01, G_02 and G_03 – finite formation of 
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estimations. Below is recognition algorithm in the form of a program module that forms an array 

O[1, m�����]of the estimations of input object in each of the classes Ωi. Proceeding from the values of 

this array a decision is taken on attributing input object to a certain class. 

Let us estimate the necessary number of operations in terms of computing 

functions O1, O2 and O3. 

Suppose, that N = ∑ nin
i=1  - total volume of learning table, that is, total number of vectors 

in T. 

Internal cycle with J1is performed q|i| times. Then, with complete i = iO, when the cycle 

with j is performed k times, internal cycle with j1is performed: 

nio ∑ qik
j=1  times 

then we shall have the following estimations: 

01 – is calculated N∑ qi times.k
j=1  

02 – is calculated N ∗ k times. 

03 – is calculated m ∗ k times. 

Now we shall fill with the concrete content the notion of proximity and unveil the 

operations: O1, O2 and O3. 

Let there be given a certain set M. The real function d(a, b) is called the function of 

distance (metric) provided, that: 

1. d(X, Y) > 0 for all X and Y from M. 

2. d(X, Y) = 0  then and only then when X = Y. 

3. d(X, Y) = d(X, Y) 

4. d(X, Y) < 𝑑(X, Z) + d(Z, Y) for all X ,Y and Z with M&. 

In practice the most often occurring cases are when such data can be analyzed that can be 

presented in n-dimensional Euclidean space En. 

Numerous different metrics have been elaborated for this space that is widely used in 

solving practical problems. Table 3 presents some of them. 

Table 3: Different Metrics 

1 Euclidean distance 
d(X, Y) = ��(xi − yi)2

n

i=1

�
1/2

 

2 Li– norm absolute value 
d(X, Y) =  �|xi − yi|

n

i=1

 

3 Supremum norm d(X, Y) =  Sn,p{|xi − yi|} 
4 1p– norm 

d(X, Y) =  ��|xi − yi|p
n

i=1

�
1/p
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5 Mahalanobis distance d(X, Y) =  (X − Y)TW(X − Y) 

Euclidean metric is most often used. Supremum-norm is the simplest in calculations. 

Mahalanobis distance is often called the generalized Euclidean distance. This distance is 

invariant with regards to the non degenerate linear transformation W - scattering matrix is 

determined as follows: 

W = n(X− Y)(X − Y)T/2 

Rather often there are other heuristic measures used that are not distances in the sense of 

the said definition but are used practically. Among them, for example, is the Jeffries- Matsushita 

measure  

d(X, Y) = ��(�xi −  �yi)
n

i=1

�
1/2

 

and the measure known under the name of the coefficient of divergence 

d(X, Y) =  �(�(
xi − y
xi + y

)2)/n
n

i=1

�
1/2

 

These measures have been borrowed from the probability theory and mathematical 

statistics. 

Thus, we have considered some of the examples of the distance function between 

vector I En. In all cases with X1 = Yd(X, Y) = 0. That is, if the vectors coincide, the distance 

between them is equal to zero. 

Now let us consider the notion of resemblance of the set members. This notion to some 

extent is opposite to the notion of distance, that is, the greater is the distance between the 

members, the lesser they are similar and vice versa, the lesser is the distance between the set 

members, the more similar they are. 

Formally similarity measure is defined as the real function D(X, Y) that satisfies the 

following conditions: 

1. 0 < 𝐷(X, Y) < 1,𝑤ℎ𝑒𝑛 𝑋 ≠ 𝑌. 

2. D(X, Y) = 1 when X = Y. 

3. D(X, Y) = D(X, Y). 

If the vector elements take values o or 1, then their similarity measure is often called the 

coefficient of association. There is a great number of types of the coefficients of association. Let 

us examine some of them making some denotations.  

Let n1 be the number of equalities xi = yi = 1; 

n0 - number of equalities xi = y1 = 0; 

n01 - number of equalities xi = 0; yi = 1; 
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n10 - number of equalities xi = 1; yi = 0; 

for all i = 1, n�����, xi ∈ X, yi ∈ Y. 

Table 4 shows examples of the coefficient of similarity presented in the introduced terms. 

Table 4:  Coefficient of Similarity 

D(X, Y) = n1(n1 + n01 + n10) 
D(X, Y) = (n1 + n0)/n 

D(X, Y) = n1/n 
D(X, Y) = 2n1/[2n1 + n10 + n01] 

D(X, Y) = 2(n1 + n0)/(n + n1 + n0) 
D(X, Y) = n1/(n1 + 2(n10 + n01)) 

D(X, Y) = (n1 + n0)/(n + n10 + n01) 

 

Coefficient of correlation or similar to it coefficients is often used as the measure of 

similarity. Though these coefficients do not correspond to the definition because they take 

values from the segment [- l, l]. 

One of such coefficients: 

D(X, Y) = � xiyi/ �� xi2
n

i=1

∗ yi2�
1/2n

i−1

 

is invariant to the linear transformation. 

The norm in En and some threshold P are often used in the problems of recognition to 

determine the measure of similarity as follows: D(X, Y) = 1 provided that  ‖X, Y‖ ≤ P, 

otherwise D(X, Y) = 0. 

There are multivariate measures of similarity. Two vectors X and Y are regarded as 

similar if inequalities of the type |xi − yi| < ai  are made at least P times, that is,  

D(X, Y) = �1, if �(|xi − yi| ≤ ai) ≥ P

0, in other case
 

for i = 1, n(|xi − yi| < ai) = 1, if inequality is made, otherwise this expression will be equal to 

zero. 

In this case the function of similarity takes only two values, 0 or 1. The measure of 

similarity can be determined by gradation of proximity, that is: 

D(X, Y) =
[∑(|xi − yi| ≤ ai)]

n
, or D(X, Y) =  �(|xi − yi| ≤ ai)  

In the latter case X and Y are completely similar (coincide) when D(X, Y) = n. Such 

determination of measure corresponds to the introduced value, but can be used in practice. 
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We shall describe the presented neural elements in the programming language Pascal by 

the following data types:  

NEd (x, n, p, w)     NEd (x, n, p) 

Type NE_d= record   Type _WE= record 

d, n, out: word;    d, n, out: word; 

X: array [1,…,n] of real;  p, A of real; 

W: array [q,…,n] of real;  X: array [l,…,n] of real;     

end;     end; 

out – value of “neuron output” (function of activation); 

A – value of neuron accumulator (storage, partial or total weighted sum); 

n – number of NE inputs; 

p  - threshold; 

X – array vector of input data; 

W – array vector of weight coefficient; 

D – number of gradations of neuron output value. 

Traditional patterns of computing with functioning neural networks and neural elements do 

not envisage a fixed processing procedure. That is why calculations are assigned in a non-

procedural form. In case of program realization of NE using traditional sequential computers 

calculations are made sequentially. 

Let it be a Pascal-like construction: 

A1: A:=0 

For i:-1v to n do 

A: = A + X [i] * W [i] 

Out: = F (A, p, d) 

Function F determines value of NE output depending on the weighted sum A, threshold P 

and the number of neuron output gradations d. The weighted sum A, is formed sequentially in 

the cycle. Execution of this fragment requires n addition operator, n multiplication operators and 

performance of threshold function Fi .  

Access to the vector elements in A1 is sequential, that is, the vector arrives for the 

processing component by component (x1, … , xn), in case of parallel realization of the algorithm 

the vector arrives in parallel, that is, access to all elements of input vector is simultaneous. 

Algorithms NE (sequential, parallel and sequential-parallel) will be presented in the form 

of the graph G(V, E) where V – node of the graph, E – arcs. In our case V – input data or 

operations, G – information links between operations or input data and operations. We shall 

describe such graphs by a multilevel structure as follows: 
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< 𝑚(ni, … , nm), {(il, … , jl) − (i2, … , j2)} >, 

where m – number of levels; ni – number of nodes on the i-th level (i = l, m); 

(il, … , jl) − (i2, … , j2) – arc from the node of the graph located on the il-th level and has on 

this level its serial number jl to the node with the serial number j2 of i2-th level. 

Let us examine algorithm A1 filling with a concrete content the functions F and A 

mentioned in it.  

On the lowest level of calculations in algorithm A2, that is in the cycle with the deepest 

location of (jl) similarity of input vector x to the il-th representative of i-th class is calculated 

with respect to j-th attribute. The sum of coincidences of input vector X with vector from table 

Ti,j is formed and the measure of similarity 0 or 1 is determined in accordance with threshold 

P[i]. Each derived attribute has its threshold - P[i].   

We shall consider realization of such cycle in a greater detail. 

Suppose we have two vectors X and Y. 

{cycle in classes Ti}, 

{cycle in representatives of classTi (Tij)}, 

{cycle in reference subsets (derived attributes)}, 

{cycle in j-th reference subset }, 

{formation of estimation of similarity of input vector for the i-th representative of the 

i-th class}, 

{formation of estimation of similarity for the i-th class}, 

{taking a decision on attributing object described by vector X to class i0}. 

Symbol # denotes ‘additive inversion in module 2’ (mod 2). 

xi and yi  ( i = l, …, n ) take values 0 or 1. The vectors are regarded as similar if their 

components coincide (p ≤ n) not less than p. If p is equal to n, then the vectors coincide 

completely, otherwise there is a partial coincidence. We shall define the measure of similarity by 

function: 

F:�(xi#yi) ≥ P
n

i=1

 

that takes value 1 if inequality is performed, value 0 if inequality is not performed. Symbol 

# denotes operation ‘additive inversion in module 2’ 

The defined function р can be realized on the n-input neural element with the activation 

function: 

� z1 ≥ P, where z1 = xi#yi

n

i=1
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We shall denote it by the expression NE(x, y, n, p), fig.1а shows the diagram of such neural 

element. 

 
Fig. 1 а. Diagram of neural element. 

Fig. 1b showing diagram of this element presents formation of inputs. In our case symbol # 

means ‘additive inversion in module 2’. In a general case this symbol corresponds to the 

operation that lies at the base of the measure of space of the attributes’ values (distance or 

similarity).  

 
Fig. 1b. Diagram of neural element with the revealed formation of inputs. 

 

Fig. 1c. Developed parallel diagram of summing input values in neural element. 

 

Fig. 1c shows a developed parallel diagram of summing input values in neural element. 

This diagram of the incomplete binary tree that is performed in [log n] steps [a] means ceiling а. 

Thus, one step of operation of NE (actuation of NE) is equal to [log n] steps of comparisons with 

the threshold and one step of execution of (#) operation. The above said includes the case of 

synchronous parallel work of NE. 

Let us consider an example. 

Suppose a set Ω presents images of printed digits (0,1, …,9) and is split into 10 subsets Ωi. 

For practical realization and testing the recognition algorithm we shall form the ‘real material’, 

that is, noisy and ‘slightly broken’ images of digits, that is, we shall subject the ‘ideal’ standard 

images of digits to the effects of impediments and, therefore, the formed images will be the 

material for recognition.  

We shall examine the bit images, that is, each pixel of the image is equal to 1 or 0 (black-

and-white binary images). The effect of impediment will be determined as follows: matrix 
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n1 ∗ n2, whose k elements are equal to 1 and the rest are equal to 0, with unities placed evenly in 

the matrix that we shall call processes intensity impediments 100K n1 ∗ n2 (uniform intensity 

impediment P%). With image matrix O and impediment matrix Z we shall form the noisy image 

matrix R by the function: 

R = (O, Z)mod 2, rij = �Oij, Zij�mod 2 

Thus, images presented by matrices R = �rij�, i = 1, n, j = 1, n, will be the material for 

recognition. 

We have n1 = 8, n2 = 8, then l = 8 ∗ 8 = 64 of the length of the vector of non-derived 

attributes, m = 10– the number of classes for recognition. Let n1 = n = 5, i = 1, … 10 – the 

number of representatives of each class. Learning table T was formed via program. We shall 

select column lines of matrix R for the reference subsets. Then K = 8 – 8 = 16. 

Reducing the two-dimensional problem of recognition to the one-dimensional problem that 

we have discussed we shall make a transition. 

We shall present matrix R by vector X = {xi} = 1, … ,64, matrix ‘elongates’ into vector 

line by line starting from the left upper element [1] from left to right and from top to bottom). 

Thus the learning table T is formed and index sets Si, S1, … , S8– lines of matrix R, R9…R16 – 

columns R, Ti, is the matrix representing j-th representative of i-th class. First level neurons 

are NE�Sj(x)#Sj, Tj�8, 8). Let the class of neurons determine similarity of input vector to the r-th 

representative of i-th class relative to Sj. Second level neurons determine estimation of similarity 

of input X to Tj in all Sj and, finally, third level neurons determine estimation of similarity of X 

to Ωi. 

CONCLUSIONS 

 Recognition algorithms based on computing estimation have been considered and the 

possibility of using these algorithms for solving the problem of identification of a person by the 

image of his palm has been shown. The synthesized algorithms of recognition of the palm are 

invariant to affine transformations. 
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